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Metabolic pathway engineering has emerged as a powerful tool Scheme 1 An Environmentally Benign Synthetic Route to
to synthesize structurally diverse and complex chemicals through Phloroglucinol
genetic manipulation of multistep catalytic systems involved in cell OH biological OH chemical OH
: : OH iological

metabolism. Because it allows the use of annqally .rengwable oY catalyst X catalyst
feedstocks such as corn, metabolic pathway engineering is often oH — -
considered to be an enabling technology for green chemistry and C: o HO , OH
the biobased econoniyHere, we report the rational design of a
fatty acid biosynthetic pathwafrevibacterium ammoniagendsatty Scheme 2. Proposed Reaction Mechanism of FAS-B (AT, Acyl
acid synthase B (FAS-B), that allows the microbial synthesis of Transferase; DH, Dehydratase; ER, Enoyl Reductase, KR,
triacetic acid lactone (TAL)L from p-glucose. TAL can be  Ketoacyl Reductase; KS, Ketoacyl Synthase; MT, Malonyl

. . L Transferase)
chemically converted to phloroglucin®f which is a core structure

for the synthesis of various high value bioactive compoéiaasl ESH —  Ppalmitic acid
energetic compounds such as 1,3,5-triamino-2,4,6-trinitrobenzene ACPS\[(\/ -

(TATB).# The synthesis of phloroglucinol from-glucose using 0 o
this combined biological and chemical synthesis (Scheme 1) may SH ASCoA SJ\
offer significant advantages over the current phloroglucinol manu- EACPSH T’ EACP

SH
facture? including environmental friendliness and reduction in the EACPS
cost of phloroglucinol. More importantly, it represents a novel
strategy for the benzene-free synthesis of aromatic chenficals.

As a type | fatty acid synthase, FAS-B is a single, large HZO# OH

o O

HOMSCOA MT

e
\g/\/

multifunctional enzyme that contains multiple functional domains SH
to catalyze all of the reactions necessary for fatty acid syntResis. E ACPS

The exact domain structure of FAS-B is unclear, but it is believed W
to include a ketoacyl-synthase (KS) domain, an enoyl reductase O OH
(ER) domain, a ketoacyl-reductase (KR) domain, an acyl transferase

(AT) domain, and an acyl carrier protein (ACP) domaiRrevi- + NADPH

ously, it was shown that TAL is the exclusive product synthesized — NADPH

in vitro by FAS-B in the absence of NADPHConsequently, a o o

reaction mechanism (Scheme 2) was proposed. Fatty acid synthesis )J\/U\ OH
proceeds from acetyl-CoA and malonyl-CoA to acetoacetyl-ACP ES X

3. Under conditions of NADPH limitation, acetoacetyl-AC® ACPSH M |o o
instead of being reduced by the KR domain (nonfunctional due to I,,,-,-\‘Ho SCoA 1
the absence of NADPH) as in the physiological condition, undergoes o o

the KS domain catalyzed condensation with malonyl-CoA to give M /
3,5-diketohexanoyl-ACR!. Subsequent enolization and intramo- ES g St

lecular cyclization o# produces TAL. Therefore, we hypothesized ACPS\H/\H/OH KS ACPSYY\“/
that inactivating the KR domain of FAS-B that is heterologously O O o o o 4

expressed in a microorganism would lead to TAL formation in vivo. €O,

To test this hypothesis, we sought to eliminate the enzyme regions connecting functional domains tend to be less conserved

?CtlvlltydOf. the F'AI‘S'.B KUR fdomaln kl)y mu_tr;l]tmg r']ts lkey r_eS|dufe(§) in sequence and structure than the functional domains. Thus, a large
Involved in catalysis. Unfortunately, neither the location of the fragment of 800 amino acids bracketing the previously identified

Fg‘dS'B KF:].domatl: nor its cata(;ytlc .re5|duezl\'/v|ere kn,(l)"\gll' 'It;husf to NADPH-binding motif was selected as a probe for BLASTP search
address this problem, we used various publicly available bioinfor- o\ yhe san Diego Supercomputer Center nonredundant protein

matics tools on the Biology WorkbencéhWe first tried to identify database. Multiple sequence alignment by CLUSTALYY the

the linker regions that define the exact FAS-B KR do”.‘a'” py esulting homologous sequences narrowed the FAS-B KR domain
sequence alignment. It was assumed that because the multlfunctlonai0 between residue 2054 and residue 2319. We then tried to refine

proteins likely result from gene fusion or duplication, the linker the primary structure of the KR domain by predicting the secondary
t University of llinois. structure of. FAS-B using PELEIt was assumgd that the first and
* Michigan State University. the last residues of the ketoreductase domain should not be in the
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middle of a defined secondary structure such asodmelix or
fp-sheet. The final location of the ketoreductase domain was
predicted to be from residue 2051 to residue 2319. Furthermore,
although this putative FAS-B KR domain has low sequence
homology (21.6%, determined by ALIGNwith the ketoreductase
(FabG) enzyme fromE. coli a member of the short-chain
dehydrogenase/reductase (SDR) superfafnily,shares several
common features with the SDR superfamily includingodfjs
structure with the signature Rossman fold motif and a highly o 20 40 & 80 100 120
conserved catalytic #2XXXK motif. * SDRs catalyze a broad Time (hr)
range of NAD(P)/NAD(P)H-dependent reduction and dehydroge- Fjgure 1. Time course of TAL production in yeast strain /e
nation reactions in which the catalytic tyrosine and lysine residues
are involved in catalysis through hydrogen bonding and proton an alternative route for benzene-free synthesis of aromatics. Of equal
transfer?~1° Thus, we hypothesized that Y2226 is an important importance, the identification of the KR domains of FAS-B and
catalytic residue and replacement of this residue with a catalytically other type | fatty acid synthases as members of the SDR protein
inert phenylalanine (F) may significantly reduce or potentially superfamily suggests that the same strategy could be used to
eliminate the KR activity. A similar mutation was made to eliminate engineer other type | fatty acid synthases for the production of TAL.
the activity of the KR domain in a modular polyketide synthase, o o
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